Mammalian autophagy is essential for hepatic and renal ketogenesis during starvation
نویسندگان
چکیده
Autophagy is an intracellular degradation system activated, across species, by starvation. Although accumulating evidence has shown that mammalian autophagy is involved in pathogenesis of several modern diseases, its physiological role to combat starvation has not been fully clarified. In this study, we analysed starvation-induced gluconeogenesis and ketogenesis in mouse strains lacking autophagy in liver, skeletal muscle or kidney. Autophagy-deficiency in any tissue had no effect on gluconeogenesis during starvation. Though skeletal muscle- and kidney-specific autophagy-deficiency did not alter starvation-induced increases in blood ketone levels, liver-specific autophagy-deficiency significantly attenuated this effect. Interestingly, renal as well as hepatic expression of HMG-CoA synthase 2 increased with prolonged starvation. Furthermore, during starvation, mice lacking autophagy both in liver and kidney showed even lower blood ketone levels and physical activity than mice lacking autophagy only in liver. Starvation induced massive lipid droplet formation in extra-adipose tissues including liver and kidney, which was essential for ketogenesis. Moreover, this process was impaired in the autophagy-deficient liver and kidney. These findings demonstrate that hepatic and renal autophagy are essential for starvation-induced lipid droplet formation and subsequent ketogenesis and, ultimately, for maintaining systemic energy homeostasis. Our findings provide novel biological insights into adaptive mechanisms to combat starvation in mammals.
منابع مشابه
Lipid metabolism during starvation: hepatic energy balance and ketogenesis.
The purpose of this paper is to integrate lipid catabolism, ketogenesis and acid-base balance during starvation. The calculations made in this presentation may be approximate, but the values give useful information. Emphasis is directed toward hydrogen (hydronium and hydride) transfer during the hyperketonaemic state of starvation, and a special role is assigned to /%hydroxybutyrate as a regula...
متن کاملHepatic ketogenesis and gluconeogenesis in humans.
Splanchnic arterio-hepatic venous differences for a variety of substrates associated with carbohydrate and lipid metabolism were determined simultaneously with hepatic blood flow in five patients after 3 days of starvation. Despite the relative predominance of circulating beta-hydroxybutyrate, the splanchnic productions of both beta-hydroxybutyrate and acetoacetate were approximately equal, tot...
متن کاملCREB3L3 controls fatty acid oxidation and ketogenesis in synergy with PPARα
CREB3L3 is involved in fatty acid oxidation and ketogenesis in a mutual manner with PPARα. To evaluate relative contribution, a combination of knockout and transgenic mice was investigated. On a ketogenic-diet (KD) that highlights capability of hepatic ketogenesis, Creb3l3-/- mice exhibited reduction of expression of genes for fatty oxidation and ketogenesis comparable to Ppara-/- mice. Most of...
متن کاملStarvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes.
Autophagy, fundamentally a lysosomal degradation pathway, functions in cells during normal growth and certain pathological conditions, including starvation, to maintain homeostasis. Autophagosomes are formed through a mechanism that is not well understood, despite the identification of many genes required for autophagy. We have studied the mammalian homologue of Atg9p, a multi-spanning transmem...
متن کاملAutophagy: molecular machinery, regulation, and implications for renal pathophysiology.
Autophagy is a cellular process of "self-eating." During autophagy, a portion of cytoplasm is enveloped in double membrane-bound structures called autophagosomes, which undergo maturation and fusion with lysosomes for degradation. At the core of the molecular machinery of autophagy is a specific family of genes or proteins called Atg. Originally identified in yeast, Atg orthologs are now being ...
متن کامل